Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Haj Abdallah Anissa,* Ayed Brahim and Haddad Amor

Département de Chimie, Faculté des Sciences de Monastir, 5000 Monastir, Tunisia

Correspondence e-mail: haj_anissa@yahoo.fr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Mg–O) = 0.003 Å R factor = 0.018 wR factor = 0.045 Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$NaMg_4(AsO_4)_3$

The title compound, sodium tetramagnesium tris(arsenate), was prepared by solid-state reaction at 1243 K. The structure is built up from edge-sharing MgO₆ octahedra associated with the AsO₄ arsenate groups. The three-dimensional network encloses cavities in which Na⁺ cations are located. This compound exhibits the NaMg₄(VO₄)₃ structure. The Na and one of the As atoms are on positions of $\overline{4}$ symmetry and the remaining cations all lie on twofold axes.

Received 13 May 2004 Accepted 25 May 2004 Online 5 June 2004

Comment

The compound NaMg₄(AsO₄)₃ crystallizes in the tetragonal system, space group $I\overline{4}2d$, with a closed three-dimensional framework. It is isostructural with the compounds NaMg₄(VO₄)₃ (Murashova *et al.*, 1988) and NaNi₄(AsO₄)₃ (Ben Smail *et al.*, 2002). However, it is completely different in structure from NaMg₄(PO₄)₃, which is analogous in composition but crystallizes in the orthorhombic system (Ben Amara *et al.*, 1983).

The asymmetric unit consists of two independent AsO_4 tetrahedra, one Na atom and an Mg_2O_{10} dimer formed by two edge-sharing MgO_6 octahedra. Each O atom of this unit connects two MgO_6 octahedra and one AsO_4 tetrahedron (Fig. 1). This arrangement is similar to those observed in $KNi_3(AsO_4)(As_2O_7)$ (Ben Smail & Jouini, 2000) and

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A fragment of the structure of Na $Mg_4(AsO_4)_3$, shown with 50% probability displacement ellipsoids.

inorganic papers

Figure 2

A view showing the association mode of the Mg_2O_{10} dimers as helical chains with AsO₄ tetrahedra.

 $K_4Ni_7(AsO_4)_6$ (Ben Smail *et al.*, 1999).

The Mg₂O₁₀ units form, by edge-sharing, infinite helical $(Mg_2O_8)_n$ chains running along the two directions [010] and [100]. Perpendicular chains are joined by O corners. The connection between chains in the same direction is assured by As2O₄ tetrahedra sharing two corners with two Mg₂O₁₀ of the same chain and an edge with MgO₆ of the nearest parallel chain.

The As1O₄ tetrahedron shares its four vertices with two Mg_2O_{10} dimers of two perpendicular chains (Fig. 2). The Mg atom lies on a twofold axis and is surrounded by six O atoms, with mean Mg1-O and Mg2-O distances of 2.112 and 2.084 A, respectively. The O-Mg1-O angles range from 80.93 (11) to 105.55 (11)°, whereas the O-Mg2-O angles vary between 74.00 (15) and 103.55 (17)°.

The As atoms are tetrahedrally coordinated by four O atoms. Atom As1 lies on a site with $\frac{1}{4}$ symmetry, with an As1-O bond length of 1.692 (3) Å, and atom As2 lies on a twofold axis, with a mean As2–O distance of 1.697 Å. The AsO₄ bond angles range from about 99 to 121°. These are in the same range as in analogous arsenate compounds.

The resulting three-dimensional network encloses cavities in which the Na⁺ cations are located. The Na⁺ cation lies on a site with $\overline{4}$ symmetry and exhibits eightfold coordination, with Na-O2 2.321 (3) and Na-O3 2.710 (3) Å.

The bond-valence sums of the Na, Mg and As atoms (1.33, 2.02, 4.84 respectively) are compatible with their oxidation states (Brown & Altermatt, 1985).

Experimental

Single crystals of NaMg₄(AsO₄)₃ were prepared from a mixture of NaNO₃, Mg(NO₃)₂· $6H_2O$ and NH₄(H₂AsO₄) in a molar ratio of 1:2:2. The mixture was ground to a powder and then heated gradually in a porcelain crucible up to 1243 K. This temperature was held for 3 d and the mixture was then cooled slowly to room temperature at 10 K h^{-1} . The product was washed with hot water and colourless prismatic crystals of the title compound were extracted. Qualitative analysis by electron microscopy probe revealed that the compound contains Na, O, As and Mg.

Crystal data

NaMg ₄ (AsO ₄) ₃	Mo $K\alpha$ radiation	
$M_r = 536.96$	Cell parameters from 25	
Tetragonal, I42d	reflections	
a = 6.817 (1) Å	$\theta = 2-27^{\circ}$	
c = 19.242 (3) Å	$\mu = 11.55 \text{ mm}^{-1}$	
V = 894.2 (2) Å ³	T = 293 (2) K	
Z = 4	Prism, colourless	
$D_x = 3.989 \text{ Mg m}^{-3}$	0.10 \times 0.07 \times 0.04 mm	
Data collection		
Enraf-Nonius CAD-4	$R_{\rm int} = 0.031$	
diffractometer	$\theta_{\rm max} = 27.9^{\circ}$	
$\omega/2\theta$ scans	$h = -8 \rightarrow 4$	

 $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.394,\ T_{\rm max}=0.630$ 1111 measured reflections 525 independent reflections 500 reflections with $I > 2\sigma(I)$

Refinement

 $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F^2 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.045$ Extinction correction: SHELXL97 S = 1.10(Sheldrick, 1997) 525 reflections Extinction coefficient: 0.0016 (3) Absolute structure: Flack (1983), 48 parameters with 203 Friedel pairs $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ Flack parameter = -0.003 (17) $(\Delta/\sigma)_{\rm max} < 0.001$

 $k = -1 \rightarrow 8$

 $l = -1 \rightarrow 25$

2 standard reflections

frequency: 120 min

intensity decay: 0.4%

Table 1

Selected geometric parameters (Å, °).

As1-O3 ⁱ	1.692 (3)	Mg2-O3 ^v	2.017 (3)
As2-O2 ⁱⁱ	1.693 (2)	Mg2-O2 ^{vi}	2.080 (3)
As2-O1 ⁱⁱ	1.702 (3)	Mg2-O1	2.154 (3)
Mg1-O1 ⁱⁱⁱ	2.078 (3)	Na-O1 ^{vii}	2.321 (3)
Mg1-O3 ^{iv}	2.088 (3)	Na-O2 ^{vi}	2.710 (3)
Mg1-O2	2.171 (3)		. ,
	(**) 3	1 (***) 4	

Symmetry codes: (i) -y, x, -z; (ii) $x, -\frac{3}{2} - y, \frac{1}{4} - z;$ (iii) -1 - y, x - 1, -z; (iv) -x, -y, z;(v) $1 + x, -\frac{1}{2} - y, \frac{1}{4} - z$; (vi) 1 - x, -1 - y, z; (vii) 1 + y, -x, -z.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

- Ben Amara, M., Valsse, M., Olzcuaga, R., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 936–939.
- Ben Smail, R., Driss, A. & Jouini, T. (1999). Acta Cryst. C55, 284-286.
- Ben Smail, R. & Jouini, T. (2000). Acta Cryst. C56, 513-514.
- Ben Smail, R., Zid, M. F. & Jouini, T. (2002). J. Soc. Chim. Tunisie, 4, 1665– 1673.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.0. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Murashova, E. V., Velikodnyi, Yu. A. & Trunov, V. K. (1988). Zh. Strukt. Khim. 29, 182–184.
- North, A. C., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.